Abstract

The application of nuclear magnetic resonance (NMR) to systems of limited quantity has stimulated the use of micro-coils (diameter <1mm). One method recently proposed for the union of micro-coils with Magic Angle sample Spinning (MAS), involves the integration of a tuned micro-coil circuit within standard MAS rotors inductively coupled to the MAS probe coil, termed “magic-angle coil spinning” (MACS). The spinning of conductive materials results in the creation of circulating Foucault (eddy) currents, which generate heat. We report the first data acquired with a 4mm MACS system and spinning up to 10kHz. The need to spin faster necessitates improved methods to control heating. We propose an approximate solution to calculate the power losses (heat) from the eddy currents for a solenoidal coil, in order to provide insight into the functional dependencies of Foucault currents. Experimental tests of the dependencies reveal conditions which result in reduced sample heating and negligible temperature distributions over the sample volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.