Abstract

AbstractDuring petroleum production, sand particles can be entrained with the transported carrier fluid despite of any sand exclusion process and erode the inner walls of the pipelines. This erosion process may even cause pipe leakage and oil spill. Therefore, investigating the regularities of erosion damage changing with particle size and predicting erosion behavior for different particle sizes are important to pipeline safety. In this study, slurry erosion experiments are conducted using quartz particles with similar shapes and different sizes ranging from 25 μm to 600 μm to investigate the effect of particle size on erosion profiles and provide the database for evaluating available erosion models. Computational fluid dynamics (CFD) is used to simulate the fluid flow and track particles to obtain impact information. Erosion equations then connect the particles’ impact information with erosion rate. Finally, the available mechanistic and empirical equations erosion models are evaluated by comparing predicted erosion profile with experimental data. It was found that the local maximum erosion damage increases with particle size, although the total erosion ratio is not changing significantly. These changes of erosion profiles can be predicted with acceptable accuracy by available empirical erosion models when particle sizes are no less than 75 μm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.