Abstract
The divertor dome (DO), being part of the ITER divertor, is designed to extract the major part of the plasma thermal energy. As a plasma-facing component (PFC), the DO experiences high heat fluxes (up to 5.0MW/m2). Such severe operation conditions of the DO imply stringent requirements for the DO design and its cooling system to ensure the required temperature operation regime of the dome. Hence, Final Acceptance Tests (FAT) shall be performed on each DO final assembled component with the aim to demonstrate that none of parallel coolant channels are completely or partially blocked. The paper presents the results of the analytical and experimental testing of the thermography method capability to perform the FAT. The aim is to determine defective hypervapotrons of the divertor dome. The method consists in contactless measurement of the dynamic temperature field of the PFC surface at a step-like increase (from zero to constant value) in the coolant flow rate with a temperature higher than that of the hypervapotron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.