Abstract

The forming limit diagram (FLD) is a useful concept for characterizing the formability of sheet metal. In this work, the formability, fracture mode and strain distribution during forming of Ti6Al4V titanium alloy and Al6061-T6 aluminum alloy sheets has been investigated experimentally using a special process of hydroforming deep drawing assisted by floating disc. The selected sheet material has been photo-girded for strain measurements. The effects of process parameters on FLD have been evaluated and simulated using ABAQUS/Standard. Hill-swift and NADDRG theoretical forming limit diagram models are used to specify fracture initiation in the finite element model (FEM) and it is shown that the Hill-swift model gives a better prediction. The simulated results are in good agreement with the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.