Abstract

This paper presents the results obtained from a field fire test, aiming to reproduce a wildland–urban interface scenario to collect relevant information concerning the impact of wildfires on the built environment. The objective was to understand heat transfer mechanisms from forest fires to structures. During the fire test, the temperatures at the exposed face of one building component were monitored, as well as those in the vicinity of that component, using thermal imaging. The detailed characterization of the field test and building component and obtained experimental results of the fire test were then used to develop and validate a complex computational fluid dynamics model (full physics models) using the Fire Dynamics Simulator (FDS). Several numerical models were previously developed to reproduce the behaviour of individual shrubs and trees in fires considering available results in the literature. The developed Computational Fluid Dynamics (CFD) models can accurately reproduce the field test, including the fire spread and the temperature evolution on the surface of the exposed construction component. The obtained maximum temperature in the construction element was 1038 °C, whereas the maximum average temperature was approximately 638 °C. According to the results from the numerical model, the construction element was exposed to a very high heat flux (above 40 kW/m2), indicating direct contact of the flames with the construction element. The use of CFD enables the quantification of the characteristics of the fire and the exposure of structures to fire in the wildland–urban interface (WUI), allowing for the definition of a performance-based design approach for buildings in the WUI. This contributes to developing safe and resilient structures, as well as mitigating and reducing the impacts of wildfires in the built environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call