Abstract

Purpose Structural configurations related to new green aircraft design require high efficiency and low weight. As a consequence, moderate-to-large deformation under operating loads arise and aeroelastic instabilities different with respect to rigid counterpart are possible. Coupled structural configurations can provide the right mean to overcome such a critical situations selecting the right coupling parameters and structural performance. In this work, the dynamic behaviour of stiffened box-beam architecture with selected optimal stiffener orientation to emphasize the bending-torsion coupling characteristics has been investigated.MethodsAn extensive experimental activity has been performed for a validation and confirmation of the numerical results. Two cantilever beams produced with different technologies and materials have been tested. Modal performance has been determined by means of a laser Doppler vibrometer (LDV), while Finite-Element Method (FEM) numerical simulation based on solid elements and equivalent single layer approach have been applied and compared. Experimental/numerical comparison have been presented pointing out the specific coupling performance of this architecture with respect to natural frequencies and modal shapes.ResultsThe activity demonstrates a good correlation in natural frequencies that remains mostly under 4%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\%$$\\end{document}. Modal assurance criterion (MAC) has been considered in comparing experimental and numerical modal shapes.ConclusionThe proposed innovative configuration demonstrates its capability to be used in aeroelastic critical problem as a mean to reduce their influence in aircraft design. The numerical procedure used for equivalencing the stiffened parts of the box-beam has also been validated in dynamical response confirming the possibility to be used in design phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call