Abstract

Polypropylene (PP) as a commodity thermoplastic, when reinforced with continuous glass fibers provides cost-effective composites. However, the low glass transition temperature and fabrication induced semi-crystalline morphology of PP set challenges for the experimental characterization especially when the quantification of damage mechanisms in multidirectional laminates is concerned. This paper is aimed at performing in-situ experimental observation, quantification and theoretical modeling of damage mechanisms in glass fiber reinforced polypropylene multidirectional laminates subjected to uniaxial quasi-static loading conditions. Two Stereo Digital Image Correlation systems (3D-DIC) are applied to measure the full-field strains and quantify the extent of damage mechanisms from the specimen's edge. The effects of ply thickness, off-axis ply orientation and location on damage initiation and growth are studied by testing different lay-ups. To validate the experimental measurements, a recent physics-based modeling technique is implemented that can predict the evolution of damage modes as well as their effects on the laminate properties. Good agreements are observed between the experimental measurements and simulation results which verify the accuracy of both analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.