Abstract

In this paper, the impact of distilled water drops on hydrophobic cylinders is characterized using both experiments and numerical simulations. Water drops of 2.54 mm in diameter impact with a velocity of 1 m/s on hydrophobic cylinders. The corresponding Reynolds and Weber numbers are 2800 and 34, respectively. Three different stainless steel cylinders with diameters of 0.48 mm, 0.88 mm, and 1.62 mm were used. The surfaces of the cylinders were made hydrophobic using a special coating spray. An experimental setup consisting of a drop generator, a high-speed camera, a lighting system, and a photoelectric sensor was used to capture images of the impact with a time-step of 1 ms. The images were then analyzed using an image processing technique implemented in the matlab software. Both the centric and off-centric impacts were studied for each cylinder diameter. A numerical simulation of the impact was also obtained using an open-source code called OpenFOAM by employing its InterFoam solver. The numerical scheme used by the solver is the volume-of-fluid (VOF) method. The predicted images of the simulations were compared well with those of the captured photographs both qualitatively and quantitatively for the entire experiments. The behavior of the drop after the impact and the subsequent deformation on hydrophobic cylinders including flow instabilities, liquid breakup, and secondary drops formation were observed from both simulations and experiments. By decreasing the cylinder diameter, the breakup occurs sooner, and a smaller number of secondary drops are formed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.