Abstract

The aim of the study is to investigate the behavior of laminated composites under low velocity impact both experimentally and numerically. With this aim, the effects of wide range impact energy values between 10 J and 60 J were evaluated experimentally and numerically for the laminate of [±45/(0/90)2]S oriented unidirectional E-glass as reinforcing material and epoxy resin for matrix material. Different impactor velocities were used to maintain the impact energy values and experimental impact tests were generated with drop weight impact testing machine at room temperature. Numerical simulations were performed using LS-DYNA finite element analysis software with a continuum damage mechanics-based material model MAT058. Contact force between impactor and laminate, and transverse deflection at the center of laminate results were obtained as a function of time and used to plot contact force–time curves, contact force–deflection curves and absorbed energy-impact energy curves. Also, delamination area was examined. Finally, numerical results were compared with experimental results and a good correlation between them was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call