Abstract
Characterizing subgrade in terms of resilient modulus is a crucial aspect of flexible pavement design. This paper proposes a methodology and predictive model to estimate the resilient modulus with better consideration of subgrade soils’ in situ stress state using a simple Repeated Load CBR (RLCBR) test. RLCBR tests were conducted on eight subgrade soils at three moisture contents. Numerical studies were conducted by simulating the CBR test in the commercial package LS-DYNA® to understand the stress state under plunger loading concerning field conditions. A new model was proposed for the characterization of subgrade soils based on laboratory RLCBR tests and the FEM, considering the stress state experienced by subgrade soils in the field. The proposed model was validated using data from four other soils and showed good agreement. The study model showed a better predictive capacity for the low plastic subgrade soils than previously developed models. Practicing engineers can use the developed model for estimating the subgrade resilient modulus at the recommended stress state for mechanistic pavement design while understanding the soil’s load-deformation behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.