Abstract

This paper investigates temperature profiles and heat fluxes in a packed bed heated by radiation that simulates solar energy flux. For this purpose, the discrete element method (DEM) was used along a heat transfer model (conduction and radiation mechanism). Short-range model is proposed for considering thermal radiation in a discrete elements system, which represents an easy-to-implement and low-computational-cost alternative. As results of the simulations, thermal profiles through the packed bed were obtained, as well as the accompanying heat flux. Experiments were performed in a packed bed of inert ceramic particles (alumina spheres). A radiant porous burner was placed at the bottom of the packed bed to simulate an imposed concentrated solar heat flux. Numerical results show good agreement with experimental data. In addition, the thermal profiles, obtained by the heat transfer model in DEM, were compared with the results obtained by discretizing the conservation of energy equation of the solid phase using finite differences, showing a correlation between the power and temperatures reached. It is concluded that the radiation model proposed provides the basis to continue with the study of granular materials at high temperature, where radiation is the dominant mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.