Abstract

This study evaluates the temperature variation observed in quasi-static uniaxial tensile tests, due to the heat generated by plastic deformation. The AA6016-T4 aluminium alloy was the material selected, considering different values of crosshead velocity (from 0.01 mm/s up to 1 mm/s). The temperature variation was also evaluated during the stress relaxation test. A finite element model of the uniaxial tensile test is presented, which takes into account the heat generated by plastic deformation, as well as the effect of the heat losses to the environment (convective heat transfer coefficient) and to the grips (interfacial heat transfer coefficient). The numerical results show that the predicted temperature variation is almost independent of the selected heat transfer coefficients. On the other hand, the temperature rise is influenced by the Taylor–Quinney coefficient. The comparison between experimental and numerical temperatures shows that the Zehnder model (increasing Taylor–Quinney coefficient) provides more accurate results than the Aravas model (decreasing Taylor–Quinney coefficient). Nevertheless, the evolution of the Taylor–Quinney coefficient defined by the Zehnder model assumes a constant value for the hardening coefficient, which does not fit the hardening behaviour observed for this aluminium alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.