Abstract

The paper presents the experimental and numerical studies of sandwich panels with a hybrid core. The sandwich panel consists of external steel facings and a core, which is made of polyurethane foam or mineral wool or a combination of those two materials. The polyurethane foam material has a low weight and high thermal insulation properties, while the mineral wool material can provide high acoustic insulation and excellent fire resistance. Various proportions of the core materials are taken into account. It is assumed that a proper combination can provide the benefits of both materials. The structural behavior of a sandwich structure with a hybrid core is observed during laboratory tests. The failure mechanism is investigated in a four-point bending test. The material parameters of the core and facings are determined in standardized tests. The obtained parameters are used for FE simulations of the four-point bending tests. The criteria of damage initiation and propagation are defined in the interface layer of the numerical model. A satisfactory correlation between laboratory tests and numerical results is reported. Additionally, the sensitivity analysis of the numerical model response to the variation of the parameters of the interface is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call