Abstract

Sequential sheet metal forming processes can result in the accumulation of work hardening and damage effects in the workpiece material. The mechanical strength of the final component depends on the “evolution” of these two characteristics in the different production steps. The punching process, which is usually in the beginning of the production chain, has an important impact on the stress, strain and damage states in the punched zones. It is essential that the influence of these mechanical fields be taken into account in the simulation of the forming sequence. In order to evaluate the evolution of each phenomenon, and in particular damage accumulation in the forming process, it is essential to characterize the punching process. The objective of this work is to understand and identify the physical damage mechanisms that occur during the punching operation and to establish relevant numerical models to predict the fracture location. The effect of the punch–die clearance on mechanical fields distribution is also discussed in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call