Abstract

A numerical analysis and experimental verification of the effects of heat load distribution on the vapor temperature, wall temperature, and the heat transport capacity for heat pipes with multiple heat sources is presented. A numerical solution of the elliptic conjugate mass, momentum and energy equations in conjunction with the thermodynamic equilibrium relations and appropriate boundary conditions for the vapor region, wick structure, and the heat pipe wall are given. The experimental testing of a copper-water heat pipe with multiple heat sources was also made showing excellent agreement with the numerical results. An optimization of the heat distribution for such heat pipes was performed and it was concluded that by redistribution of the heat load, the heat capacity can be increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.