Abstract
Vortex induced vibrations (VIV) of long, slender marine structures may cause severe fatigue damage. However, VIV is still not fully understood, which calls for further research on this topic. This paper discusses results from experimental and numerical investigations of forces on rigid cylinders subjected to combined in-line (IL) and cross-flow (CF) motions, and it aims at improving the understanding of the interaction between IL and CF response components. Model tests with a long flexible beam were conducted at MARINTEK for the Norwegian Deepwater Programme (NDP). The model was 38 m long and it was towed horizontally so that both uniform and linear sheared current profiles could be obtained. Orbits for cross section motions at selected positions along the beam were identified in these tests. Forced motion experiments using these orbits were later carried out in the Marine Cybernetic Laboratory at Norwegian University of Science and Technology (NTNU). A 2 m long rigid cylinder was towed horizontally and forced to follow the measured orbits with identical amplitude ratio, non-dimensional frequency and Reynolds number as for the flexible beam tests. Parts of the results from these tests were published by Yin & Larsen in 2010. In this paper results from an investigation of trajectories for six positions along the beam in a uniform current condition will be shown. Three orbits have nearly the same CF amplitude ratio at the primary CF frequency, and the other three have similar IL amplitude ratio at the primary IL frequency, which is twice the CF frequency. Hydrodynamic coefficients have been found from experiments and numerical computations were carried out to find vortex shedding patterns for these cases. The main conclusions are that the IL motion component is a significant influence factor, and that higher order displacement components are more pronounced in IL direction than CF. Significant displacements in IL direction at 6 times the primary CF frequency were also observed, the ‘2T’ vortex pattern was captured when strong IL motion components were present. It is also seen that hydrodynamic coefficients should be found for combined CF and IL orbits and thereby improve the empirical models for prediction of VIV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.