Abstract
In the present paper, along with experimental study, CFD analysis of forced convection in a twisted tube is performed, using the transition SST model which can predict the change of flow regime from laminar through transition to turbulent. The differential governing equations are discretized by the finite volume method. The investigations are conducted for Reynolds numbers ranging from 100 to 50000 covering laminar, transitional and turbulent regimes, and for three length and three pitch ratios. The predictions are observed to show a good agreement with the measurements and published correlations of other authors. The analysis indicates that the large length ratio and small pitch ratio yields a higher heat transfer rate with relatively low performance penalty. The transition from laminar to turbulent regime is observed between Reynolds numbers of 2500 to 3500 for all cases. For almost all investigated cases the performance factors are greater than unity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.