Abstract

The sclera provides mechanical support to retina and protects internal contents of the eye against external injuries. The scleral extracellular matrix is mainly composed of collagen fibers and proteoglycans (PGs). At physiological pH, collagen molecules are neutral but PGs contain negatively charged glycosaminoglycan chains. Thus, the sclera can be considered as a polyelectrolyte hydrogel and is expected to exhibit mechanical response when subjected to electrical stimulations. In this study, we mounted scleral strips, dissected from the posterior part of porcine eyes, at the center of a custom-designed container between two electrodes. The container was filled with NaCl solution and the bending deformation of scleral strips as a function of the applied electric voltage was measured experimentally. It was found that scleral strips reached to an average bending angle of 3°, 10° and 23° when subjected to 5V, 10V, and 15V, respectively. We also created a chemo-electro-mechanical finite element model for simulating the experimental measurements by solving coupled Poisson-Nernst-Plank and equilibrium mechanical field equations. The scleral fixed charge density and modulus of elasticity were found by fitting the experimental data. The ion concentration distribution inside the domain was found numerically and was used to explain the underlying mechanisms for the scleral electroactive response. The numerical simulations were also used to investigate the effects of various parameters such as the electric voltage and fixed charge density on the scleral deformation under an electric field. Statement of significanceThis manuscript investigates the electroactive response of scleral tissue. It demonstrates that the sclera deforms mechanically when subjected to electrical stimulations. A chemo-electro-mechanical model is also presented in order to numerically capture the electromechanical response of the sclera. This numerical model is used to explain the experimental observations by finding the ion distribution inside the tissue under an electric field. This work is significant because it shows that the sclera is an electroactive polyanionic hydrogel and it provides new information about the underlying mechanisms governing its mechanical and electrical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call