Abstract

This article focuses on comparing the experimental and numerical compressive behaviour of metal foams. The metal foams were initially modelled in three configurations of pore sizes. Each configuration was 3D printed using a laser sintering metal additive manufacturing technique. Subsequently, quasi-static compression tests were conducted and their stress-strain curves were examined to ascertain the proof stress of the three configurations. A numerical simulation of the compressive behaviours of the three foams was then conducted and their results were correlated with those from experimentation to quantify the error in simulation. The compression tests revealed that, the compressive strength was a function of density and porosity of the metal foams. Further, the numerical results of compression behaviours were validated, with less than 5 % deviation from the experimental results for all three foam configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.