Abstract

PurposeFor moderate pressure and high pressure gear pumps, the temperature failure problem of bearings is now of considerable concern because of their heavy loads. However, the compact structure and the efficiency consideration make it extremely difficult to improve the bearing cooling. A self-circulating oil bearing system is developed for gear pumps with self-lubricating bearings to solve this problem. The oil is aspirated in from the low pressure chamber of the gear pump and discharged to the same chamber by using the pressure difference in the journal bearing, thus achieving the self-circulation.Design/methodology/approachAn experiment test rig has been built for the feasibility study. The oil flow rate under different speeds has been recorded. Furthermore, the temperatures of the bearings with or without the oil circulation have been compared. Additionally, the oil flow in the test rig has been simulated using computational fluid dynamics codes.FindingsThe experimental and numerical results agree well. The experimental results indicate that the oil flow rate increases approximately linearly with the speed and the bearing temperature can be lowered successfully. The calculation results indicate that the bearing load capacity is nearly the same. Both the experimental and numerical studies establish that the self-circulating oil bearing system works successfully.Originality valueAs far as the authors know, it is the first time to find that the self-circulation can be built using the pressure difference in the bearing oil film, and this principle can be applied in the cooling and lubrication of the gear pumps to solve the temperature failure problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.