Abstract
Multi-layer insulation (MLI) blankets are one of the main components of satellite thermal control system. The past studies have considered infinite heat transfer coefficient in modeling the MLI shields due to the use of reflective thin films such as aluminized Kapton (Polyimide Film Developed by DuPont Company) or aluminized PET (Polyethylene Terephthalate) in MLI shields. Therefore, equal temperature was considered on two sides of a shield and the effect of thermal resistance has been ignored in the total thermal resistance. In the present study, the effects of thermal conductivity of thin film and shield thickness are analyzed. For this purpose, numerical analyses are performed on three types of blankets that are made of Kapton, PET and null shields. The results indicate that the difference in effective emittance of Kapton and PET blanket is 17% to 2% from the thinnest film to the thickest film, respectively. In order to confirm the numerical results, the effective emittance of two types of MLI blankets made of Kapton and PET films is measured under identical conditions. It is concluded that the Kapton blanket has lower effective emittance than PET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.