Abstract

Recently the demand for sloshing analyses is rising because of the construction of large LNG carriers and LNG platforms. This study considers the experimental and numerical observations of strongly nonlinear sloshing flows in ship cargo and their coupling effects with ship motion. Violent sloshing flows in experiments are observed, and two different numerical methods, the finite-difference method and smoothed-particle-hydrodynamics (SPH) method, are applied for the simulation of violent sloshing flows. Several physical issues are introduced in the analysis of sloshing flows, and the corresponding numerical models are described. This study demonstrates that physics-based numerical schemes are essential in the prediction of violent sloshing flows and sloshing-induced impact pressure. To study the sloshing effects on ship-motion, a ship-motion program based on an impulsive response function (IRF) is coupled with the developed numerical models for sloshing analysis. The results show that the nonlinearity of sloshing-induced forces and moments plays a critical role in the coupling effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.