Abstract

AbstractIn this paper, the mean stress relaxation behavior of simple Al‐alloy 2024‐T3 specimens and also the mean stress relaxation around the hole of cold expanded specimen are studied. The analyses are performed through the combination of the nonlinear isotropic hardening and Chaboche nonlinear kinematic hardening model accompanied by the results of experimental tests. The strain‐controlled axial tests are performed at two different strain amplitudes, while the stress‐controlled tests of cold expanded specimens are performed for three different imposed load amplitudes. The constitutive equations of the hardening model are coded as a UMAT subroutine in FORTRAN programming language and implemented in the commercial finite element code of ABAQUS. The accuracy of the hardening model has been proved in two steps: first by simulations of mean stress relaxation during the uniaxial strain‐controlled cyclic tests and second by simulation of strain ratcheting during the stress‐controlled cyclic loading. The stress and strain distributions after cold expansion process are examined as well as the mean stress relaxation due to cyclic loading. The results show the influences of imposed stress amplitude on increasing mean stress relaxation and also the effect of cold expansion level on reducing the mean stress relaxation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call