Abstract

Numerical–experimental correlation study for small scale damaged stiffened panels was performed. Six small scale models were fabricated. Two of them were employed for the correlation of intact panels and the remaining four for the correlation of dented panels. Ultimate strength analyses were carried out in order to adjust the numerical model for further use in parametric studies. The damage was imposed by a local indentation of the panels. Measurements of geometric imperfection distributions and damage shapes have been performed before and after the damage using a laser tracker equipment. The numerical models were represented by shell elements assuming finite membrane strains and large rotations, considering both geometric and material nonlinearities. Results obtained showed very good agreement between experimental and numerical analyses for both intact and dented panels. Additionally, numerical simulations of damaged stiffened panels were performed. The aim of the parametric study was to evaluate the behavior up to and beyond buckling, to observe the strength loss due to the presence of the damage on the panel. The explicit nonlinear finite element code from abaqus program was employed to simulate the dent damage. Therefore, distortions and the residual stresses due to the damage were both considered in subsequent numerical compression analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.