Abstract

To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1cm length of a new elongated (103)Pd brachytherapy source through both experimental measurements and Monte Carlo (MC) simulations. Measured and MC-calculated dose distributions were used to determine the American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters for this source. The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and was simulated with the MCNP5 radiation transport code. Measured and MC results were normalized to their respective mean values and then compared. The source dose distribution was determined from measurements with LiF:Mg,Ti thermoluminescent dosimeter (TLD) microcubes and MC simulations. TG-43 dosimetry parameters for the source, including the dose-rate constant, Λ, two-dimensional anisotropy function, F(r, θ), and line-source radial dose function, gL(r), were determined from the TLD measurements and MC simulations. NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy of the source showed that ≥95% of the normalized values for each source were within 1.2% of the mean value. TLD measurements and MC simulations of Λ, F(r, θ), and gL(r) agreed to within the associated uncertainties. This new (103)Pd source exhibits a high level of azimuthal symmetry as indicated by the measured and MC-calculated results for the in-air azimuthal anisotropy. TG-43 dosimetry parameters for the source were determined through TLD measurements and MC simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.