Abstract

The influence of different inorganic anions (Cl–, Br–, SCN–, NO3–, SO42–, and CH3COO–) and cations (Ca2+, Mg2+, Na+, and NH4+) on the surface potential of graphene oxide (GO) suspension has been investigated both experimentally and computationally. The hydrophilic GO surface has negative surface potential (zeta potential) which can be varied by changing the pH of the suspension as well as by adding external inorganic ions. The surface of GO is hydrophilic in a basic medium and becomes hydrophobic in an acidic medium because of the protonation and deprotonation of the surface functional groups. The presence of inorganic ions affects the electrophoretic mobility of the dispersed phase within the GO suspension and influences its zeta potential. This is due to the formation of a double layer of charge at the interface of the GO and ionic salt solution. Molecular dynamics simulations were used to understand the interactions of ions within the slipping plane of GO, which influences its zeta potential in salt so...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.