Abstract

Study of the thermodynamic behaviour of CaCl2-H2O-CO2 systems is important in different scientific areas in the chemical and petroleum engineering fields. For example, a system including salt-H2O-CO2 is a common system in CO2 geological storage. During carbonate matrix acidizing, this mixture also appears as the spent acid. Hence, study of the behaviour of this system and the solubility of CO2 in CaCl2 brine in different thermodynamic conditions is critical. In this study, CO2 solubility in 0, 1.90 and 4.80 mol/L CaCl2 solutions at 328.15 to 375.15 K and 68.9 to 206.8 bar were measured. These values are normal for oil reservoirs. A popular thermodynamic model is available in the literature for estimating the CO2 solubility in pure water and NaCl solutions. In this paper, the available model was modified by experimental work to be applicable for CaCl2 as well. Based on the measured data, the component interaction parameters in the base model were adjusted for a CaCl2-H2O-CO2 system. The developed model could predict CO2 solubility in different conditions with remarkable accuracy, particularly for high concentration solutions and at high pressures. This improvement is up to 65% better than in the base model. This model can be used in Darcy scale models for predicting wormhole propagation during carbonate matrix acidizing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.