Abstract

A natural illite (illite du Puy) was purified and converted to the homo-ionic Na form. The conditioned Na–illite was characterised in terms of its mineralogy, chemical inventory, and surface properties. The structural formula was determined from EDS analyses (SEM/TEM) and bulk chemistry. A cation exchange capacity of 127 mEq/kg was determined by the Na isotope dilution method at neutral pH.The sorption of Cs was measured as a function of NaClO4 background electrolyte concentration (1.0, 0.1 and 0.01 M), Cs concentration and pH in the range ≈3 to ≈10. Before obtaining these measurements the kinetics of Cs uptake were determined at initial concentrations of 2 × 10−8 M and 7 × 10−5 M, representing the extremes of the range investigated, and was found to be concentration dependent. The supernatant solutions after centrifugation were analysed for major cations in all of the sorption tests.A two-site cation exchange model was developed to describe the sorption of Cs over the whole range of experimental conditions. The two-site types were termed frayed edge sites, FES (high affinity/low capacity) and type II sites (low affinity/high capacity). At low NaClO4 concentrations, Cs sorption decreased at pH values less than neutral. This was interpreted in terms of competitive effects from H, and K released by the partial dissolution of illite, which cannot be avoided at low and high pH values. Selectivity coefficient values for Cs–Na, Cs–K, K–Na, and H–Na exchange equilibria on the FES sites, and Cs–Na exchange on the type II sites are given for illite together with the corresponding site capacities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call