Abstract

In tropical montane South-East Asia, recent changes in land use have induced increased runoff, soil erosion and in-stream suspended sediment loads. Land use change is also contributing to increased microbial pathogen dissemination and contamination of stream waters. Escherichia coli (E. coli) is frequently used as an indicator of faecal contamination. Field rain simulations were conducted to examine how E. coli is exported from the surface of upland, agricultural soils during runoff events. The objectives were to characterize the loss dynamics of this indicator from agricultural soils contaminated with livestock waste, and to identify the effect of splash on washoff. Experiments were performed on nine 1 m2 plots, amended or not with pig or poultry manure. Each plot was divided into two 0.5 m2 sub-plots. One of the two sub-plots was protected with a mosquito net for limiting the raindrop impact effects. Runoff, soil detachment by raindrop impact and its entrainment by runoff, and E. coli loads and discharge were measured for each sub-plot. The results show that raindrop impact strongly enhances runoff generation, soil detachment and entrainment and E. coli export. When the impact of raindrops was reduced with a mosquito net, total runoff was reduced by more than 50%, soil erosion was on average reduced by 90% and E. coli export from the amended soil surface was on average 3 to 8 times lower. A coupled physics-based approach was performed using the Cast3M platform for modelling the time evolutions of runoff, solid particles detachment and transfer and bacteria transport that were measured for one of the nine plots. After estimation of the saturated hydraulic conductivity, soil erodibility and attachment rate of bacteria, model outputs were consistent with measured runoff coefficients, suspended sediment and E. coli loads. This work therefore underlines the need to maintain adequate vegetation at the soil surface to avoid the erosion and export of soil borne potential pathogens towards downstream aquatic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.