Abstract

AbstractThe production of O2‐enriched air (OEA) using dense mixed conducting perovskite hollow fiber membranes was studied experimentally and theoretically. The fibers were prepared by phase inversion spinning followed by sintering. A mathematical model was developed based on the mass balances for the OEA side, the O2‐depleted air side and the hollow fiber itself to simulate the O2‐enrichment. Based on the experiments and the model, the mass transport in the mixed conducting material was quantified using Wagner's theory. Furthermore, 3‐D plots of broad parameter fields were calculated to estimate optimal operation conditions for a maximum O2‐enrichment. The results elucidate that a required O2 concentration in the OEA, and the production rate can be adjusted by controlling the operation parameters, such as temperature, air pressure differences and sweep air flow rates. The long term operation (800 h) indicates that the perovskite hollow fiber membranes offer a promising potential for the industrial OEA production. © 2006 American Institute of Chemical Engineers AIChE J, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.