Abstract
Coal particle combustion experiments were performed in a drop tube furnace (DTF) with oxygen concentration from 21% to 100%, in N2 and CO2 mixtures, under quiescent flow conditions. Small particles (75–90μm) of a high-volatile bituminous coal (PSOC-1451) and a lignite coal (DECS-11) are analyzed with particular attention to the particle burnout times and the particle surface temperatures. These experimental measurements are compared with the predictions of a comprehensive model of coal combustion. Combustion of coal particles is a multi-scale process where both chemical and physical phenomena are involved, thus it requires a coupled and accurate description of the kinetics as well as of the heat and mass transport phenomena. Important features of the model are a multistep kinetic scheme of coal volatilization and detailed kinetics of the successive gas-phase reactions and of the heterogeneous reactions of both char oxidation and gasification. The achieved overall agreement between the experimental data and the numerical predictions, in terms of particle temperature and burnout times, highlights the capability of the model to simulate the effect of different operating conditions in the coal combustion processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.