Abstract

The free-radical copolymerization of acrylamide with the cationic monomer DMAEA-Q in aqueous medium is investigated with special attention to its composition behavior, which reveals to be affected by the electrostatic interactions between the charges in the system. The reaction kinetics is determined by in situ 1H NMR experiments, showing a peculiar dependence of the copolymer composition upon initial monomer and electrolyte concentrations. A kinetic model simulating the evolution of copolymer composition as a function of conversion is developed, accounting for the nonconventional features of the system. Namely, a description of the electrostatic interactions based on the DLVO theory is introduced to define a functional dependence of the rate coefficients on the ionic strength. Secondary reactions are also included due to the acrylic nature of both monomers. The proposed model is applied to estimate the corresponding reactivity ratios and proves to exhibit the correct functionality with respect to monomer...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call