Abstract

Fe type clay minerals, Fe–montmorillonite, are expected to form in the nuclear waste repositories over a span of few years owing to the interaction of corrosion products from overpack and/or canister with bentonite consisting of montmorillonite (Mt) as the major clay mineral. Therefore, it is important to understand the properties of altered clay minerals, Fe–Mt. In the present study, the sorption behaviour of 133Ba(II), one of the high-yield fission products of uranium-based fuels and analogue of 90Sr (t1/2 = 28.5 y), on Fe(II)–Mt and Fe(III)–Mt has been investigated. Retention behavior of Ba(II) on Fe–Mt has been studied at varying pH (3–9), ionic strength (0.001 M–1 M) and Ba(II) concentration (10−9–10−3 M) by batch sorption method. The distribution coefficient (Kd) of Ba(II) on Fe–Mt was found to be nearly independent of pH while it decreased with increasing ionic strength indicating ion exchange as the dominant Ba(II) sorption mode on Fe–Mt. Adsorption isotherm of Ba(II) exhibited linearity in the entire Ba(II) concentration range. A comparison of Ba(II) sorption behavior on Fe–Mt and Na–Mt has been made. The Fe released from both Fe(III)–Mt and Fe(II)–Mt was measured in all the sorption experiments and was found to be much less in the case of Fe(III)–Mt (≤ 1.7 ppm) when compared to Fe(II)–Mt (~ 25 ppm). The modeling of Ba(II) sorption profiles on Fe–Mt and Na–Mt has been carried out using FITEQL 4.0.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call