Abstract

The soot formation in the combustion of four oxygenated fuels on a single-cylinder engine has been investigated experimentally and numerically. To accomplish this objective, a reduced combustion mechanism was proposed for the modeling studies, which has been extensively validated. Then direct injection compression ignition experiments fueled with diesel, biodiesel, and its blends with 20% volume fraction of ethanol (E20), n-butanol (B20), and 2,5-dimethylfuran (D20) have been conducted. In the three-dimensional (3-D) modeling studies, the reduced mechanism can well predict the experimental combustion and soot emission results. In contrast to the combustion phasing, the soot emissions for the five fuels were sequenced as diesel > biodiesel > B20 > D20 > E20, which was mainly due to the different oxygen content and fuel reactivity in the spray-combustion processes. Furthermore, 0-D modeling investigations were conducted as well to clarify the effects of the different oxygenated structures on the polycyclic ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call