Abstract

The purpose of this work is to achieve a better understanding of the coupling between adsorption and swelling in microporous materials. This is typically of utmost importance in the enhancement of non-conventional reservoirs or in the valorization of CO2 geological storage. We consider here the case of fully saturated porous solids with pores down to the nanometer size (≤ 2nm). Hardened cement paste, tight rocks, activated carbon or coal are among those materials. Experimentally, different authors tried to combine gas adsorption results and volumetric swelling data, especially for bituminous coal. However, most results in the literature are not complete in a sense that the adsorption experiments and the swelling experiments were not performed on the exact same coal sample. Other authors present simultaneous in-situ adsorption and swelling results but the volumetric strain is extrapolated from a local measurement on the surface sample or by monitoring the two-dimensional silhouette expansion. Only elastic and reversible swellings are reported in the literature. Theoretically, most continuum approaches to swelling upon adsorption of gas rely on a coupling between the adsorption isotherms and the mechanical deformation. A new poromechanical framework has been recently proposed to express the swelling increment as a function of the increment of bulk pressure with constant porosity. However, this framework has to be extended to take into account the porosity evolution upon swelling. This paper aims at presenting a new experimental set-up where both adsorption and strain are measured in-situ and simultaneously and where the full-field swelling is monitored by digital image correlation. Permanent strain and damage are observed. On the other hand, we present an extended poromechanical framework where the porosity is variable upon swelling. A new incremental nonlinear scheme is proposed where the poromechanical properties are updated at each incremental pressure step, depending on the porosity changes. Interactions between swelling and the adsorption isotherms are examined and a correction to the classical Gibbs formalism is proposed. Predicted swellings are compared with results from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.