Abstract
The low-temperature oxidation of n-heptane, one of the reference species for the octane rating of gasoline, was investigated using a jet-stirred reactor and two methods of analysis: gas chromatography and synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) with direct sampling through a molecular jet. The second method allowed the identification of products, such as molecules with hydroperoxy functions, that are not stable enough to be detected using gas chromatography. Mole fractions of the reactants and reaction products were measured as a function of temperature (500–1100K), at a residence time of 2s, at a pressure of 800Torr (1.06bar) and under stoichiometric conditions. The fuel was diluted in an inert gas (fuel inlet mole fraction of 0.005). Attention was paid to the formation of reaction products involved in the low-temperature oxidation of n-heptane, such as olefins, cyclic ethers, aldehydes, ketones, species with two carbonyl groups (diones), and ketohydroperoxides. Diones and ketohydroperoxides are important intermediates in the low-temperature oxidation of n-alkanes, but their formation have rarely been reported. Significant amounts of organic acids (acetic and propanoic acids) were also observed at low temperatures. The comparison of experimental data and profiles computed using an automatically generated detailed kinetic model is satisfactory overall. A route for the formation of acetic and propanoic acids was proposed. Quantum calculations were performed to refine the consumption routes of ketohydroperoxides toward diones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.