Abstract

Steady-state tracer gas measurements were carried out to study the gas mixing behaviors in a spout-fluid bed with a cross section of 0.3 m x 0.03 m and height of 2 m. Two different tracer gases were simultaneously injected, one was injected into the spouting gas flow and the other was injected into the fluidizing gas flow. Radial tracer gas concentrations at various bed elevations under different flow patterns were measured. The mechanism of gas mixing was discussed based on the racer gas concentrations and the flow patterns recorded by a high-resolution digital CCD camera. It was found that gas mixing in spout-fluid beds was due to both convection and dispersion. A three-region mixing model was developed to describe the gas mixing in the spout-fluid bed. The spout jet region and the boundary region were modeled with a mass transfer model; the annular region was modeled with a dispersion model. Effects of spouting gas and fluidizing gas flow rate on the gas exchange between the spout jet and the annular dense region, and the gas dispersion in the annular dense region were examined with flow patterns. The results showed that increase in spouting gas velocity and fluidizing gas flow rate could both promote the gas mixing in spout-fluid beds. The gas-solid flow pattern transited from internal jet to spouting to spout-fluidizing, and the gases were better mixed. But the gases became poorly mixed when the flow pattern transited from stable flow to instable flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.