Abstract

This paper focuses on the mechanical response of double-layer aluminum foam under static and impact loading. In the first part, experimental investigations are conducted to research the static and dynamic response of aluminum foam. The mechanical response of single- and double-layer specimens is discussed. In the second part, a mesoscopic model is developed based on X-ray CT (computed tomography) images. The mesoscopic characteristics of aluminum foam cells in size, shape, and distribution are considered according to the statistical results. Simulations reveal that the presented mesoscopic model can reliably predict the mechanics of aluminum foam. At last, it conducts study on the dynamic response of the aluminum foam employing the mesoscopic model. It discusses the mesoscopic deformation mechanism of double-layer specimens under high-velocity impact. Results show that the density arrangement is critical to the dynamic crushing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call