Abstract

To conserve freshwater resources, seawater may be used for concrete production. As sodium chloride (NaCl) is the most abundant mineral found in seawater, in this study, we focused on the effects of NaCl on the hydration of alite, which is the major clinker phase in Portland cement, and its hydration dominates the mechanical behaviour of cement pastes. NaCl solutions with varying concentrations were mixed with alite at a solution-to-binder ratio of 0.5. Then, a combination of experiments and mesoscale simulation was utilized to study the influence of NaCl on the micro-mechanical properties of alite pastes. The nanoindentation test showed the improving micro-mechanical properties of alite pastes with increasing NaCl concentration. The pore size distribution analysis agreed with mesoscale simulation on the reduced porosity, and the latter showed increased cohesion. The porosity and cohesion changes were initiated by the ionic effects of Na+ and Cl− that modify the Debye length of C-S-Hparticle and dielectric constant of the C-S-Hgel pore solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.