Abstract

Testing of concrete panels subjected to pure in-plane shear loading is necessary to elucidate the shear behavior of concrete. However, available data for predicting the shear capacity and behavior of steel fiber-reinforced concrete are rather limited. This study aims to evaluate the shear capacity and behavior of fiber-reinforced concrete made of highly flowable strain hardening fiber-reinforced concrete (HF-SHFRC) experimentally and analytically, respectively, using a panel tester loaded under pure shear and modified compression field theory (MCFT). The test was conducted using a panel test machine at the University of Toronto. The test results of the HF-SHFRC demonstrated strain hardening behavior at tension after the first crack, as indicated by the increase in the shear stress after the first crack in the HF-SHFRC panel. An analysis procedure is proposed for predicting the shear strength of steel fiber-reinforced concrete (SFRC) based on experimental data of the SFRC panels to obtain reliable results. A comparison of results obtained from the proposed analysis procedure and experiments show that it accurately predicted the response of the HF-SHFRC. The proposed MCFT-based analysis procedure can provide valuable insight for understanding the behavior of the SFRC panels under shear loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call