Abstract
Spray flash evaporation is a promising way that potentially enables various renewable energy sources to be employed for desalination. This paper specifically studies the flash evaporation phenomenon of a hot water jet sprayed into a low-pressure chamber. Special considerations are rendered to the flash evaporation process under lower temperature differences which evolves higher thermal efficiency and better low-grade heat utilization for desalination. An experimental setup has been developed and temperature profiles of the sprayed water in the axial direction are mapped. Under low flow velocity conditions, the water jet shatters into droplets due to the flash atomization effect. Such a shattering phenomenon can be captured and quantified by a mathematical model based on droplet analysis. Applying this model, the temperature profiles are translated into the mean spray droplet diameters. The effect of different variables on the flash evaporation process is further investigated. Key results revealed that the mean droplet diameters of the spray are several orders of magnitudes smaller than the nozzle diameter. Such fine droplets allow complete evaporation to be accomplished within 50 cm from the nozzle exit, enabling a compact evaporator design. Additionally, higher initial temperature differences and higher flow velocities reduce the mean droplet diameter to be smaller than 300 μm, and the corresponding vertical distance required to complete the evaporation process is shorter than 10 cm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.