Abstract
The earthquake usually causes multi-dimensional vibration for the large span grid structure, how to effectively isolate and mitigate the vibration response of structure is an important problem in engineering. In this paper, a novel viscoelastic bio-inspired multi-dimensional vibration isolation (VBM-VI) device is proposed under the inspiration of bionic design of the bird legs, which possesses multi-dimensional vibration isolation performance by constituting of viscoelastic core pad and VE-LLS device together. The property experiment of the VBM-VI device is performed to explore the mechanical performance at vertical and horizonal directions, the hysteretic curves and characteristic parameters are discussed to reveal the influence of the excitation frequency and amplitude on the mechanical properties of the VBM-VI device, the experimental results show that the mechanical properties express significant frequency and amplitude dependence at vertical and horizontal directions. To further describe the mechanical proprieties of the VBM-VI device, the mathematical models are established at vertical and horizontal directions respectively, and the comparison analysis between experimental and theoretical results indicates that the established mathematical models can precisely describe mechanical performance of the VBM-VI device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.