Abstract

Sulfur trioxide (SO3) is corrosive and environmentally harmful. Under oxy-combustion mode, the formation of SO3 is aggravated due to flue gas recirculation, and should be more concerned than that under traditional air-combustion mode. In this paper, the catalytic formation of SO3 by iron oxide (Fe2O3) under oxy-combustion mode was experimentally studied in a fixed-bed reactor, and effects of temperature (300–900 °C), atmosphere, catalyst particle size, SO2, O2, and H2O concentrations were discussed. Results show that Fe2O3 promotes SO3 formation, and the yield of SO3 reaches a maximum at 700 °C under both air- and oxy-combustion modes. Increasing O2 concentration in a range of 5–20% promotes the catalytic formation of SO3, whose effect is restricted at a higher O2 concentration. Both increases of SO2 concentration in a range of 500–3000 ppm and steam concentration in a range of 0–20% decrease the SO3 yield. A significant effect of Fe2O3 particle size on SO3 catalytic formation is observed. When the particle size decreases from 50-75 μm to 10–25 μm, the inflection temperature shifts from 700 °C to 600 °C, while the maximum SO3 yield increases by 33%. Kinetics analysis results show that in this case, the catalytic conversion from SO2 to SO3 by Fe2O3 has an apparent activation energy Ea of 18.9 kJ/mol and a pre-exponential factor A of 5.2 × 10−5. At 700 °C and with Fe2O3 particle size of 50–75 μm, the global reaction orders of SO2 and O2 for SO3 formation are 0.71 and 0.13, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.