Abstract
Ignition delay times of di-n-butyl ether (DBE)/oxygen mixtures diluted with argon were measured behind reflected shock waves for the pressures between 1.2 and 4 bar, the temperatures between 1100 and 1570 K, and the equivalence ratios of 0.5, 1.0, and 1.5. A recently developed DBE model was employed to simulate the autoignition process of the homogeneous mixture. Comparisons between the measured and calculated ignition delay times indicate that the model yields fairly good agreement under all test conditions. Results show that the ignition delay time increases with the decrease of the pressure and the increase of the dilution ratio. The ignition delay time demonstrates a strong negative dependence upon the equivalence ratio at high temperatures, and the difference among the ignition delay times tends to decrease when the temperature is decreased. Sensitivity analysis reveals the importance of H-abstraction reactions and decomposition of α fuel radicals in the ignition process of DBE. Reaction pathway anal...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.