Abstract
Experiments of ignition delay times on 2,4,4-trimethyl-1-pentene were performed behind reflected shock waves at pressure ranging from 2atm to 10atm, at equivalence ratios from 0.5 to 2.0, and with fuel concentrations of 0.5%, 0.75% and 1%. All ignition delay times follow the Arrhenius rule, and discussions on the effect of pressure, temperature, equivalence ratio and fuel concentration on ignition delay times were made. Metcalfe model overpredicts the ignition reactivity of 2,4,4-trimethyl-1-pentene, and this model was modified to achieve better agreement for measured ignition delay times. Sensitivity analysis and reaction pathway analysis were conducted to gain a deep insight into 2,4,4-trimethyl-1-pentene ignition chemistry. The ignition delay time is sensitive to the small-radical reactions. In addition, H abstraction reactions and unimolecular decomposition reactions dominate the ignition process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.