Abstract

The pyrolysis and oxidation chemistry of diethylamine (DEA), a nitrogen-containing bio-oil model compound, is investigated theoretically and experimentally at low to intermediate temperatures. The pyrolysis of DEA is studied using two experimental units, i.e. a jet-stirred reactor and a tubular reactor. Oxidation experiments are performed at three different equivalence ratios, i.e. φ = 1.0, 2.0 and 0.5 in the jet-stirred reactor unit. The temperature ranges from 500 K to 1100 K, at a pressure of 1.07 bar, and with a space time of 2 s. An elementary step kinetic model for DEA pyrolysis and oxidation is built using the automatic kinetic model generator Genesys with a base mechanism extracted from Glarborg et al. (2019) which describes the oxidation of the small nitrogen-containing species. Important thermodynamic and kinetic parameters for the DEA decomposition chemistry are obtained from quantum chemical calculations. The experimental trends are well predicted by the model, even without any fitting of the model thermodynamic or kinetic parameters. Rate of production analyses reveal the important pathways for the pyrolysis and low- and intermediate-temperature oxidation to hydrogen cyanide, acetonitrile, NOx and others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call