Abstract

A chemical flow reactor has been used to study the vibrational population distribution of carbon monoxide produced by a reaction between vapor-phase carbon generated in an arc discharge and oxygen, to determine feasibility of extracting the chemical energy released from this reaction by laser radiation. Additionally, a supersonic flow, electric discharge excited CO laser has been developed and characterized over a range of operating conditions. The same supersonic laser apparatus can be adapted to produce population inversion via oxidation of vapor-phase carbon, generating vibrationally excited CO. Resultant laser power and spectra are compared with the predictions of a kinetic model of a supersonic flow CO laser.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call