Abstract

2-Furfuryl alcohol, a promising platform chemical, and alternative fuels or additives, is produced from the hydrogenation of furfural. However, the low- to moderate-temperature oxidation study of 2-furfuryl alcohol is scarce up to now. The present study first performed the oxidation experiments in a jet-stirred reactor at the equivalence ratios of 0.5, 1.0, and 2.0. The oxidation species were identified and measured by the synchrotron vacuum ultraviolet photoionization mass spectrometry. No negative-temperature-coefficient behavior was observed. A detailed kinetic model was developed to better understand the consumption of 2-furfuryl alcohol and the formation of oxidation products. The present model can well reproduce the experimental results. Based on the rate of production analysis, H-abstraction reactions on hydroxymethyl group forming hydroxyl(2-furyl)methyl radical are the dominant pathways. Besides, the formation and consumption of main products, such as furfural, furan, acrolein, acetaldehyde, etc., are also discussed. Fuel radicals control the formation of furfural. Furan has multiple formation sources, such as the H-addition reactions on 2-furfuryl alcohol, furfural, and 2-hydroxyfuran. Acrolein is produced by the H-addition reaction on 2-hydroxyfuran and OH-addition reactions on furan. Also, the present work compares and discusses peak concentration for major oxidation products of 2-furfuryl alcohol and 2-methyl furan under the same simulated condition. 2-Furfuryl alcohol oxidation produces a higher concentration of furfural, furan, and acrolein than that of 2-methyl furan. OH on hydroxymethyl group promotes the H-abstraction reactions on the side chain and inhibits the OH-addition reaction on the furan ring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call