Abstract
The pyrolysis of furan was studied from 1100 to 1600K in a flow reactor at low pressure (30Torr). Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for isomeric identification and mole fraction measurements of the pyrolysis products, especially the free radicals. Specific products were observed and measured for the unimolecular decomposition reactions of furan, such as propyne+CO, acetylene+ketene and propargyl radical, etc. An updated combustion model of furan from Somers model was adopted to simulate the mole fraction profiles of the pyrolysis species measured in this work. Kinetic modeling analysis indicated that the decomposition of furan is mainly controlled by the unimolecular decomposition reactions under the investigated conditions. Based on the experimental results and theoretical simulations, propargyl radical is suggested to be mainly formed from the direct unimolecular decomposition of propyne instead of that of furan. In furan pyrolysis, propargyl and phenyl radicals are the most important precursors of large aromatic species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.