Abstract
2,5-Dimethylfuran (DMF) is an attractive biofuel being stable, insoluble in water and an alternative to gasoline. DMF is accessible via hydrodeoxygenation of the cellulosic bio-based platform chemical 5-hydroxymethylfurfural (HMF). Efficient transformations of HMF to DMF have been reported to date; however, the kinetics of the reaction and a comprehensive analysis of the reaction network have not been addressed yet. In the present work, a plausible reaction network based on kinetic study of the hydrodeoxygenation of HMF over a carbon-supported nickel catalyst is proposed. The study of the reaction network showed the reaction indeed proceeds via the hydrogenation of the aldehyde group of HMF to form 2,5-bishydroxymethylfuran (BHMF) and subsequent conversion of BHMF to 5-methylfurfurylalcohol (MFA) followed by hydrogenolysis of MFA to DMF. Side reactions include the formation of 2,5-dihydroxymethyltetrahydrofuran (DHMTHF) and 2,5-dimethyltetrahydrofuran (DMTHF). A suitable kinetic model enabled estimating the kinetic parameters in the reaction temperatures range of 150–190°C. Kinetics analysis revealed the hydrogenation of HMF to BHMF as rate-determining step, while subsequent deoxygenation to DMF proceeds faster. Interestingly, most undesired reactions were kinetically hindered under selected reaction conditions allowing high selectivity to the target product DMF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.